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Abstract

Based on the governing equations of double-porosity media extended from Biot’s theory, the propagation characteristics

of Rayleigh waves are discussed in this paper. Characteristic equations of Rayleigh waves in a double porosity half-space

with the pervious boundary are derived by assuming that both the coupling mass coefficient r23 and coupling permeability

term k(12) are equal to zeros. The dispersion and attenuation properties of Rayleigh waves in a double porosity medium are

analyzed numerically. The effects of the porosity and fracture permeability on the behavior of the propagation of Rayleigh

waves are investigated. It is found that Rayleigh waves in a double porosity half-space are dispersive and attenuated during

propagation. The Rayleigh wave speed is always less than the phase velocity of P1 and shear waves, and always higher than

the phase velocity of P3 wave.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The propagation characteristics of Rayleigh waves in fluid-saturated porous media are an important
problems not only from the point of view of applications such as geophysics, hydrology and acoustics, but also
at the theoretical level. It is well known that Biot [1,2] first established the fundamental theory for wave
propagation in porous media. Biot’s theory predicts that there exists three kinds of bulk waves, i.e., fast
compressional wave, slow compressional wave and one kind shear wave. Deresiewicz [3] first discussed
Rayleigh waves in fluid-saturated porous media. Jones [4] studied the problem of Rayleigh waves in porous-
saturated solid with a pervious surface based on Biot’s theory, but his results were criticized by Tajuddin [5].
Tajuddin [5] investigated Rayleigh waves in a poroelastic half-space with the pervious and impervious
boundaries and gave the curves of the Rayleigh wave speed vs. Poisson’s ratio. Liu and De Boer [6] discussed
the Rayleigh waves in a fluid-saturated porous half-space based on the theory of mixtures and gave the
dispersion and attenuation curves. The effects of permeability parameters on the propagation of Rayleigh
waves were also studied. Sharma and Gogna [7] studied Rayleigh waves in a anisotropic liquid-saturated
porous solid but the dissipation is ignored. Liu and Liu [8] investigated the influence of anisotropy of the solid
skeleton on the propagation characteristic of Rayleigh waves in an orthotropic fluid-saturated porous medium
based on Biot’s theory.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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It has been confirmed that in some materials, such as most rocks and some acoustic materials, there mainly
exist two kinds of porosities: matrix porosity which is also called storage porosity, occupies a substantial
fraction in the reservoir but has a very low permeability, and fracture or crack porosity which occupies very
little volume but has a very high permeability. Wave propagation problems in double porosity media have
received more and more attention in recent years. The double porosity media theory has been applied in
various fields such as oil extraction, geological exploration and water resources exploitation. The double
porosity model was first proposed by Barenblatt [10] to express fluid flow in hydrocarbon reservoirs and
aquifers. Warren and Root [11] made an improvement to this model, which allows for coupling between the
rock deformation and the fluid flow. Wilson and Aifantis [12,13] published a series papers on consolidation of
saturated double porosity media. They studied the wave propagation problem in saturated fractured porous
media and showed that there exist three kinds of longitudinal waves and one transverse wave. According to
the Mixture theory, Tuncay and Corapcioglu [14,15] used a volume averaging technique to investigate the
wave propagation in fractured porous media saturated by two immiscible fluids based on the double-porosity
approach. Their discussions showed the existence of three compressional and one rotational waves. Beskos
[16] got analogous results. Based on ideas similar to those of Biot’s theory, Berryman and Wang [17] derived
the phenomenological equations for double porosity media and presented the method to determine the
relevant coefficients [18]. Their discussions showed that all three compressional waves are attenuative, and the
second compressional wave is diffusive at low frequencies while third compressional wave is diffusive at all
frequencies.

At present, the works about Rayleigh waves in double porosity media have not been available in the
literatures. The purpose of this paper is to discuss the propagation of Rayleigh waves in double porosity
media filled with one kind of incompressible fluid. The balance equations and constitutive relations con-
structed by Berryman and Wang [17] are adopted. The organization of this paper is as follows. In Section 2,
the governing equations of double porosity media are reviewed. In Section 3, the characteristic equations of
Rayleigh waves are derived. In Section 4, based on the characteristic equations derived in Section 3, numerical
calculations are performed. The dispersion and attenuation curves are given. In Section 5 some conclusions
are given.
2. Governing equations

By generalizing Biot’s approach, Berryman and Wang introduce the kinetic energy function T and the
dissipation function D. Then according to the Lagrange principle, the equations of motion for double porosity
media can be expressed as [17]
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where ui, U
ð1Þ
i and U

ð2Þ
i are solid displacement, matrix pore fluid displacement and fracture pore fluid

displacement, respectively, p̄ð1Þ and p̄ð2Þ are the average macroscopic pressure of matrix pore fluid and fracture
pore fluid across interface, related to the internal real pore pressure p(1) and p(2), respectively, by

p̄ð1Þ ¼ nð1Þfð1Þpð1Þ; p̄ð2Þ ¼ nð2Þpð2Þ, (2)

where v(1) and v(2) are volume fractions of matrix and fracture pore, respectively, with vð1Þ þ vð2Þ ¼ 1, f(1) is the
volume fraction of the matrix pore in matrix and the volume fraction of the matrix pore in medium is p(1)f(1).
The total porosity can be expressed as

f ¼ nð1Þfð1Þ þ nð2Þ, (3)

where rij is the mass coefficient and bij is the viscosity coupled coefficient. Detailed expressions of rij and bij

are given in Appendix A.
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When considering wave propagation problem, the cross-coupling coefficients between matrix pores
and fractures equal zero and can be neglected, that is, r23 ¼ 0 and b23 ¼ 0. Then Eq. (1) can be
reduced to
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Similar to Biot’s original equations, linear relations among the solid strain, the fluid content and the pore
pressure are given by [19]
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where e ¼ r � u ¼ ui,i is the overall volume strain, x(1) and x(2) are increments of matrix and fracture
fluid content which are related to the displacements by zð1Þ ¼ �nð1Þfð1Þr � ðU ð1Þ � uÞ and zð2Þ ¼
�nð2Þr � ðU ð2Þ � uÞ. pc, p(1) and p(2) are the external confining pressure, the fluid pressure in the matrix pore
and the fluid pressure in the fracture, respectively. The coefficients have the relations aij ¼ aji and are related to
material properties by

a11 ¼ 1=K ; a12 ¼ �að1ÞK ð1Þs 1=K1Ks,

a13 ¼ � a=K � a12; a22 ¼ nð1Það1Þ=Bð1ÞK ð1Þ,

a23 ¼ � nð1Það1Þ=K ð1Þ � a12,

a33 ¼ nð2Þ=Kf þ nð1Þ=K ð1Þ � 1� 2að Þ=K ð1Þ þ 2a12, ð6Þ

where K and K(1) are the jacketed frame bulk moduli of the whole and the matrix, respectively, Ks and K ð1Þs are
the unjacketed bulk moduli for the whole and the matrix, a ¼ 1� K=Ks and að1Þ ¼ 1� K ð1Þ=K ð1Þs are the
corresponding Biot–Willis parameters. B(1) is Skempton’s pore-pressure buildup coefficient [20]. Kf is the pore
fluid bulk modulus.

Eq. (5) can be rewritten as
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where A is the inverse matrix of the coefficient matrix of Eq. (5).
In addition, the solid stress can be expressed as [17]

r � s ¼ Ku þ
1

3
G

� �
reþ Gr � �þ Kur Bð1Þzð1Þ þ Bð2Þzð2Þ

� �
, (8)

where

Ku ¼
K

1� 3K bð1ÞBð1Þ þ bð2ÞBð2Þ
� � (9)

is the undrained bulk modulus for double porosity media. b(1) and b(2) are poroelastic expansion co-
efficients.
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Combining Eqs. (5), (8) and (9), we can get the following motion equations expressed by u, U(1) and U(2):
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Considering the Helmholtz resolution of each of the three displacement vectors in the form:

u ¼ rfs þ rws; U ð1Þ ¼ rf1 þrw1; U ð2Þ ¼ rf2 þ rw2, (11)

where ja and waða ¼ s; 1; 2Þ are potential functions of the solid skeleton, fluid in matrix pores and fluid in
fractures, respectively. In a plane problem, the vector potential waða ¼ s; 1; 2Þ is simply degenerated to a scalar
function caða ¼ s; 1; 2Þ:

Applying the divergence operation to Eq. (10), we obtain:
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Applying the curl operation to Eq. (10), we obtain
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Eqs. (12) and (13) describe the propagation of the compressional and shear waves in double porosity media,
respectively. Since the imaginary parts of the complex wavenumbers should be positive to insure decay, it can
X

Z

double porosity media
half-space

Fig. 1. A schematic drawing of the problem.
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be seen from Eqs. (12) and (13) that there exists three kinds of compressional waves (P-1, P-2 and P-3 waves)
and one shear wave (S wave) in double porosity medium [21].
3. Characteristic equations of Rayleigh waves

Consider a double porosity half-space with the surface Z ¼ 0. The geometry of the problem to be
considered is illustrated in Fig. 1. The rectangular Cartesian coordinates(X, Y, Z) are selected. The positive
Y-axis orients in the direction perpendicular and outward to the paper and the positive direction of Z-axis is
downward.

To investigate the existence of Rayleigh waves in double porosity media, we assume the solutions of
Eqs. (12) and (13) are the plane harmonic waves along the positive X-axis and can be expressed in the
following forms:
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where As, Af1, Af2, Bs, Bf1, Bf2 are amplitudes of corresponding potential functions, k is the complex
wavenumber of Rayleigh waves along X-axis, p and s are positive real numbers or complex numbers having
positive real part to insure wave decay along the positive Z-axis.

The potential functions are connected with the relevant stresses sz, txz and the fluid pressure terms
p(1), p(2) by
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Substituting Eq. (14) into Eq. (12), we get
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where
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Substitution of Eq. (15) into Eq. (13) yields
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The conditions for nontrivial solutions of Eqs. (17) and (19) require the determinant of matrix [M] and [N]
must be equal to zero, respectively,
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The explicit expressions of aiði ¼ 1; 2; 3; 4Þ are not listed here for the complexity. It should be noticed that
the coefficients ai and bi are functions of the angular frequency o.

From Eqs. (21a, b), we can get the solution of p and s as follows:
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where kdiði ¼ 1; 2; 3Þ and ks are wavenumbers of the compressional and shear waves in double porosity media,
which can be expressed as
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It is clear that when the dissipation is ignored, i.e., the viscosity of the fluid Z equals zero,
and r12 ¼ r13 ¼ r23 ¼ 0, r11 ¼ r22 ¼ r33 ¼ rs, where rs is the density of the elastic medium, Eq. (23d) is
reduced to

c2s ¼
G
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(25)

which is just the shear wave speed in elastic medium.
Assume pðiÞði ¼ 1; 2; 3Þ be the three roots of Eq. (21a) with positive imaginary part. If DðnÞr are normalized

solutions of Eq. (17), the general solutions of Eq. (17) must be of the form
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Similarly, assume s be the root of Eq. (21b) with a positive imaginary part. If rr are normalized solutions of
Eq. (19), the general solutions of Eq. (19) must be of the form
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According Eqs. (26) and (27), the potential functions in Eqs. (14) and (15) can be expressed as
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The free surface is supposed to be pervious, i.e.

sz ¼ 0; txz ¼ 0; pð1Þ ¼ pð2Þ ¼ 0 at z ¼ 0. (29)

Substitution of Eqs. (16a–d) into Eq (29) and considering Eqs. (28a, b) leads to
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777775 ¼ ½R�

xð1Þp

xð2Þp

xð3Þp

xs

2
666664

3
777775 ¼ 0. (30)

The explicit expressions for the elements of [R] are given in Appendix B.
The condition for the nontriviality of solutions for Eq. (30) is the determinant of matrix [R] must be equal

to zero

Det R½ � ¼

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

���������

���������
¼ 0. (31)

Separating the real and imaginary parts of Det[R] and k, Eq. (31) yields

Re Det R½ �ð Þ ¼ 0, (32a)

Im Det R½ �ð Þ ¼ 0. (32b)

Considering the numerical methods used in Refs. [8,9], a root-finding technique used to solve k is given as
follows. For a certain frequency, the wave numbers of four bulk waves in double porosity media, i.e.,
kdiði ¼ 1; 2; 3Þ and ks, are determinate numbers. First we set the imaginary part of the complex wavenumber of
Rayleigh wave to be zero, i.e., Im(k) ¼ 0, then from Eq. (32a) the real part of the complex wavenumber of
Rayleigh waves, i.e., Re(k), can be solved. Secondly, by substituting the value of Re(k) into Eq. (32b), Im(k)
can also be solved. Thirdly, by substituting the value of Im(k) into Eq. (32a), the new value of Re(k) can be
solved. Repeat the above procedure until the difference between the values of Re(k)(or Im(k)) obtained by
Eqs. (32a) and (b) is within the expected error. In our calculations the error is taken to be

ReðknÞ �Reðkn�1Þ
�� ��

Reðkn�1Þ
�� �� o0:01.

In the above iteration steps, the interval dichotomy is used to determine the new iterative values of Re(k)
and Im(k).

It is noted that for an elastic medium, the coefficients r12, r13, r22, r23, r33, b12 and b13, f
(1) and n(2) are equal

to zero, and r11 ¼ rs, where rs is the density of the elastic medium. Accordingly there exists only one
appropriate root p for Eq. (21a). Then through lengthy calculation and simplification, Eq. (31) can be reduced
to

4 1� ðcR=~cd Þ
2

� �1=2
1� ðcR=~csÞ

2
� �1=2

� 2� ðcR=~csÞ
2

� �2
¼ 0. (33)

In the above expression, ~cd and ~cs are phase velocities of the compressional and shear waves in elastic
medium, respectively. Eq. (33) is just the well-known Rayleigh wave equation in elastic half-space. Therefore
the classical Rayleigh waves in elastic half-space are a particular case of the Rayleigh waves in double porosity
media.

Let r13, r23, r33, b13 and n(2) be zero, and r11 ¼ rs, r22 ¼ rf, where rs and rf are the densities of the solid and
fluid, respectively, we can also derive the corresponding Rayleigh wave equation in a single porosity media
from Eq. (31) which is not given here for its complexity.
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Table 1

Material properties [19]

Parameter Double porosity media Elastic media

K (GPa) 1.052

Ks (GPa) 36.2

K(1) (GPa) 8

K(2) 0.00775

a 0.971

a(1) 0.78

a(2) 1.0

rs (kg/m
3) 3000

rf (kg/m
3) 1000

Z (Pa s) 0.001

f(1) 0.064

n(1) 0.9936

n(2) 0.0064

B(1) 0.847

B(2) 0.998

k(11) (m2) 10�16

k(22) (m2) 10�12

l (GPa) 4.5

G (GPa) 3.0

r (kg/m3) 2000
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It should be noticed that the imaginary part of k must be positive to insure wave decay along the
X-axis direction. The phase velocity (measured in m/s) and attenuation (measured in dB/Hz s) are given,
respectively, by

u ¼
o

jReðkÞj
, (34a)

d ¼ 2p� 8:686� ImðkÞ=jReðkÞj. (34b)

4. Numerical calculations and discussion

In this section, we will use the formulas derived above to compute the phase velocity and attenuation of
Rayleigh waves in double porosity half-space. The double porosity medium is chosen to be Berea sandstone.
The physical parameters are taken from Ref. [19] and listed in Table 1. With the parameters listed in Table 1,
the phase velocities of the four bulk waves (three kinds of compressional waves and one shear wave) in a
double porosity infinite medium are calculated numerically in order to be compared with the Rayleigh wave
speed in a double porosity half-space. The relations of phase velocities of the bulk waves with the wave
frequency are demonstrated in Fig. 2(a)–(d).

It is seen that in our discussed cases the phase velocity of the fast compressional wave (P1) is about 920m/s
and slightly varies with the wave frequency. The phase velocity of the slower compressional (P2) wave is
significantly dependent on frequency and its value varies approximately from 0 to 250m/s. The phase velocity
of the slowest compressional wave (P3) is very low and varies approximately from 0 to 3.5m/s. The phase
velocity of the shear wave is about 525m/s and it almost does not change with frequency.

4.1. Effects of the permeability on the Rayleigh wave speed and attenuation

The effects of the fracture permeability on the Rayleigh wave speed and attenuation are studied first. The
fracture permeability k(22) is taken to be 10�10, 10�12 and 10�16m2, respectively, and other material properties
remain constants as shown in Table 1. The calculation results are shown in Fig. 3(a) and (b). It is shown in
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Fig. 2. (a) Variation of the phase velocity of P1 wave speed with frequency f. The material constants of the double porosity medium are

given in Table 1. (b) Variation of the phase velocity of P2 wave speed with frequency f. The material constants of the double porosity

medium are given in Table 1. (c) Variation of the phase velocity of P3 wave speed with frequency f. The material constants of the double

porosity medium are given in Table 1. (d) Variation of the phase velocity of shear wave with frequency f. The material constants of the

double porosity medium are given in Table 1.
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Fig. 3(a) that unlike the classical Rayleigh wave in an elastic solid half-space, the Rayleigh wave speed in a
double porosity medium is dispersive at all frequencies considered. It seems that at very high frequency
(42000Hz, say) the Rayleigh wave speed may approach a limit value. The higher the frequency is, the higher
the Rayleigh wave speed is. Comparing Fig. 3(a) with Fig. 2, it is found that the Rayleigh wave speed in
double porosity media is always less than the phase velocities of the fast compressinal (P1 wave) and the shear
wave. The Rayleigh wave speed is always lager than the phase velocities of the third compressional waves (P3
wave). At the low frequencies (less than several hundreds Hz), the Rayleigh wave speed may be less than the
phase velocity of the slower compressional wave (P2 wave), but at the high frequencies (larger than 1000Hz,
say), the Rayleigh wave speed is larger than the phase velocity of the slower compressional wave (P2 wave).

The Rayleigh wave speed is dependent of the fracture permeability greatly. At the same frequency, the
higher the fracture permeability coefficient is, the higher the Rayleigh wave speed is. And as the frequency
increases, the difference is more evident.

It is illustrated in Fig. 3(b) that Rayleigh waves in double porosity media are slightly damped. In the
discussed case the attenuation of Rayleigh waves varies approximately from 0 to 0.12. Since Rayleigh wave is a
superposition of the compressional and shear waves near the surface, and the attenuations of three
compressional (P1–P3) waves and one shear wave increase with the frequency, the attenuation of Rayleigh
waves along the direction X-axis (the direction of propagation) also increases with a rise in frequency. At the
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Fig. 3. (a) Variation of Rayleigh wave speed in a double porosity half-space. with frequency f at different fracture permeability (k(22)). The

material constants of the double porosity medium are given in Table 1. (b) Variation of attenuation of Rayleigh wave in a double porosity

half-space with frequency f at different fracture permeability (k(22)). The material constants of the double porosity medium are the same as

in (a).
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Fig. 4. (a) Variation of Rayleigh wave speed in a double porosity half-space with frequency f at different matrix porosities. The material

constants of the double porosity medium are given in Table 1. (b) Variation of attenuation of Rayleigh wave in a double porosity half-

space with frequency f at different porosities. The material constants of the double porosity medium are the same as in (a).
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same frequency, the higher the fracture permeability is, the lower the attenuation coefficient is, since the
permeability coefficient characterizes the dissipation between the solid skeleton and the liquid. As the
frequency increases, the difference is also more evident.

Since the fluid in double porosity media stores mainly in the matrix pores, it is instructive to investigate the
effect of the matrix permeability on the propagation of Rayleigh waves. The matrix permeability k(11) is taken
to be 10�14, 10�15 and 10�16m2, respectively, and the other material properties remain constants as shown in
Table 1. The calculation results reveal that the matrix permeability almost has no effect on the Rayleigh wave
speed and attenuation. It can be explained as follows. Although the fluid in a double porosity medium stores
mainly in the matrix pores, the fluid transports mainly through the fractures. Therefore its influence on the
Rayleigh wave speed and attenuation is also small.

4.2. Effects of the matrix porosity on the Rayleigh wave speed and attenuation

In order to investigate the effect of f(1) on the Rayleigh wave speed and attenuation, the matrix porosity f(1)

is taken to be 0.064, 0.178 and 0.25, respectively. The matrix permeability and the fracture permeability are
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taken to be 10�16 and 10�12m2, respectively, and the other material properties remain constant as shown in
Table 1. Calculation results are shown in Figs. 4(a) and (b). It is shown in Fig. 4(a) that the Rayleigh wave
speed depends on the matrix porosity. At the same frequency, the larger the matrix porosity is, the higher the
Rayleigh wave speed is. The effect of porosity on the Rayleigh wave speed is more evident as the frequency
increases. Fig. 4(b) indicates that the effect of the matrix porosity on the attenuation of Rayleigh waves is also
evident. For the higher porosity coefficient, the attenuation coefficient is also higher, and this effect is more
evident as the frequency increases. It can be explained that since more fluids flow in the matrix pores for the
higher porosity f(1), although the permeability coefficient of these pores is very small, the dissipation between
the solid and the liquid is also higher for the higher matrix porosity.
5. Summary and conclusions

In this paper, a theoretical analysis has been developed for the propagation of Rayleigh waves in double
porosity media. The characteristic equation of Rayleigh waves with the permeable surface is derived. Through
appropriate simplification, it can be degenerated to the Rayleigh wave equation in elastic solids and in single
porosity media. It is found that Rayleigh waves in double porosity medium are dispersive and damped in
directions of both X-axis (direction of propagation) and Z-axis. The attenuation along the direction of
propagation is very small, so Rayleigh waves in double porosity medium can propagate over a long distance.
By comparison, it is found that the speed of Rayleigh waves in double porosity media is always less than that
of the first compressional (P1) and shear waves, whereas it is always larger than that of the third compressional
(P3) wave. At low frequencies the speed of Rayleigh waves is larger than that of the second compressional (P2)
wave, while at high frequencies larger than that of P2 wave. Numerical calculations reveal that the effects of
the porosity and fracture permeability coefficients on the Rayleigh wave speed and attenuation coefficient are
evident. For the higher fracture permeability the Rayleigh wave speed is also higher, while the attenuation
coefficient is lower. And for the larger matrix porosity, the Rayleigh wave speed and the attenuation
coefficient are both higher.
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Appendix A

The explicit expressions for rij and bij are given as follows:

r11 ¼ ð1� fÞrs þ ðt� 1Þfrf ,

r12 ¼
ðtð2Þ � 1Þnð2Þ � ðtð1Þ � 1Þnð1Þfð1Þ � ðt� 1Þf
� �

rf

2
,

r13 ¼
ðtð1Þ � 1Þnð1Þfð1Þ � ðtð2Þ � 1Þnð2Þ � ðt� 1Þf
� �

rf

2
,

r22 ¼ tð1Þnð1Þfð1Þrf ,

r23 ¼
ðt� 1Þf� ðtð1Þ � 1Þnð1Þfð1Þ � ðtð2Þ � 1Þnð2Þ
� �

rf

2
,

r33 ¼ tð2Þnð2Þrf ; b12 ¼
Znð1Þfð1Þ nð1Þfð1Þkð22Þ � nð2Þkð21Þ

� �
rf

kð11Þkð22Þ � kð12Þkð21Þ
,
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b13 ¼
Znð2Þ nð2Þkð11Þ � nð1Þfð1Þkð21Þ

� �
rf

kð11Þkð22Þ � kð12Þkð21Þ
,

b23 ¼
Znð1Þnð2Þfð1Þkð12Þ

kð11Þkð22Þ � kð12Þkð21Þ
, ðA:1Þ

where k(11), k(12), k(21) and k(22) are permeability coefficients, t, t(1) and t(2) are overall, matrix and fracture
tortuosity. t is connected with the shape factor r and porosity f by the formula t ¼ 1þ r ð1=fÞ � 1

� �
. t(1) and

t(2) have the similar relations considering that f is substituted by f(1) and f(2) (f(2)
¼ 1), respectively [17].

In particular, r is equal to 0.5 for spherical grains. Z is shear viscosity of the fluid.
Appendix B

The explicit expressions for the elements of [R] are given as follows:

r11 ¼ Ku þ
G

3

� �
K ð1Þp Dð1Þ1 � KuK ð1Þp Bð1Þnð1Þfð1ÞðDð1Þ2 � Dð1Þ1 Þ

h	

þ Bð2Þnð2ÞðDð1Þ3 � Dð1Þ1 Þ
io
ðp2
ð1Þ � k2

Þ þ GK ð1Þp Dð1Þ1 p2
ð1Þ

r12 ¼ Ku þ
G

3

� �
K ð2Þp Dð2Þ1 � KuK ð2Þp

	
Bð1Þnð1Þfð1ÞðDð2Þ2 � Dð2Þ1 Þ
h

þ Bð2Þnð2ÞðDð2Þ3 � Dð2Þ1 Þ
io
ðp2
ð2Þ � k2

Þ þ GK ð2Þp Dð2Þ1 p2
ð2Þ,

r13 ¼ Ku þ
G

3

� �
K ð3Þp Dð3Þ1 � KuK ð3Þp

	
Bð1Þnð1Þfð1ÞðDð3Þ2 � Dð3Þ1 Þ
h

þ Bð2Þnð2ÞðDð3Þ3 � Dð3Þ1 Þ
io
ðp2
ð3Þ � k2

Þ þ GK ð3Þp Dð3Þ1 p2
ð3Þ,

r14 ¼ �Gr1ksk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

s

q
i; r21 ¼ �2GK ð1Þp Dð1Þ1 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

d1

q
i,

r22 ¼ �2GK ð2Þp Dð2Þ1 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

d2

q
i; r23 ¼ �2GK ð3Þp Dð3Þ1 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

d3

q
i

r24 ¼ �Gksr1 k2
þ k2

s

� �
, ðB:1Þ

r31 ¼ A21K ð1Þp Dð1Þ1 þ A22nð1Þf
ð1ÞK ð1Þp ðD

ð1Þ
2 � Dð1Þ1 Þ

h
þ A23nð2ÞK ð1Þp ðD

ð1Þ
3 � Dð1Þ1 Þ

i
ðp2
ð1Þ � k2

Þ,

r32 ¼ A21K ð2Þp Dð2Þ1 þ A22nð1Þf
ð1ÞK ð2Þp ðD

ð2Þ
2 � Dð2Þ1 Þ

h
þ A23nð2ÞK ð2Þp ðD

ð2Þ
3 � Dð2Þ1 Þ

i
ðp2
ð2Þ � k2

Þ,

r33 ¼ A21K ð3Þp Dð3Þ1 þ A22nð1Þf
ð1ÞK ð3Þp ðD

ð3Þ
2 � Dð3Þ1 Þ

h
þ A23nð2ÞK ð3Þp ðD

ð3Þ
3 � Dð3Þ1 Þ

i
ðp2
ð3Þ � k2

Þ,

r34 ¼ 0,

r41 ¼ A31K ð1Þp Dð1Þ1 þ A32nð1Þf
ð1ÞK ð1Þp ðD

ð1Þ
2 � Dð1Þ1 Þ

h
þ A33nð2ÞðD

ð1Þ
3 � Dð1Þ1 Þ

i
ðp2
ð1Þ � k2

Þ,
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r42 ¼ A31K ð2Þp Dð2Þ1 þ A32nð1Þf
ð1ÞK ð2Þp ðD

ð2Þ
2 � Dð2Þ1 Þ

h
þ A33nð2ÞðD

ð2Þ
3 � Dð2Þ1 Þ

i
ðp2
ð2Þ � k2

Þ

r43 ¼ A31K ð3Þp Dð3Þ1 þ A32nð1Þf
ð1ÞK ð3Þp ðD

ð3Þ
2 � Dð3Þ1 Þ

h
þ A33nð2ÞðD

ð3Þ
3 � Dð3Þ1 Þ

i
ðp2
ð3Þ � k2

Þ,

r44 ¼ 0.
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